Package 'Rlgt'

Title: Bayesian Exponential Smoothing Models with Trend Modifications
Description: An implementation of a number of Global Trend models for time series forecasting that are Bayesian generalizations and extensions of some Exponential Smoothing models. The main differences/additions include 1) nonlinear global trend, 2) Student-t error distribution, and 3) a function for the error size, so heteroscedasticity. The methods are particularly useful for short time series. When tested on the well-known M3 dataset, they are able to outperform all classical time series algorithms. The models are fitted with MCMC using the 'rstan' package.
Authors: Slawek Smyl [aut], Christoph Bergmeir [aut, cre], Erwin Wibowo [aut], To Wang Ng [aut], Xueying Long [aut], Alexander Dokumentov [aut], Daniel Schmidt [aut], Trustees of Columbia University [cph] (tools/make_cpp.R, R/stanmodels.R)
Maintainer: Christoph Bergmeir <[email protected]>
License: GPL-3
Version: 0.2-2
Built: 2024-11-22 02:22:24 UTC
Source: https://github.com/cbergmeir/rlgt

Help Index