Package: Rlgt 0.2-2

Rlgt: Bayesian Exponential Smoothing Models with Trend Modifications

An implementation of a number of Global Trend models for time series forecasting that are Bayesian generalizations and extensions of some Exponential Smoothing models. The main differences/additions include 1) nonlinear global trend, 2) Student-t error distribution, and 3) a function for the error size, so heteroscedasticity. The methods are particularly useful for short time series. When tested on the well-known M3 dataset, they are able to outperform all classical time series algorithms. The models are fitted with MCMC using the 'rstan' package.

Authors:Slawek Smyl [aut], Christoph Bergmeir [aut, cre], Erwin Wibowo [aut], To Wang Ng [aut], Xueying Long [aut], Alexander Dokumentov [aut], Daniel Schmidt [aut], Trustees of Columbia University [cph]

Rlgt_0.2-2.tar.gz
Rlgt_0.2-2.zip(r-4.5)Rlgt_0.2-2.zip(r-4.4)Rlgt_0.2-2.zip(r-4.3)
Rlgt_0.2-2.tgz(r-4.4-x86_64)Rlgt_0.2-2.tgz(r-4.4-arm64)Rlgt_0.2-2.tgz(r-4.3-x86_64)Rlgt_0.2-2.tgz(r-4.3-arm64)
Rlgt_0.2-2.tar.gz(r-4.5-noble)Rlgt_0.2-2.tar.gz(r-4.4-noble)
Rlgt.pdf |Rlgt.html
Rlgt/json (API)

# Install 'Rlgt' in R:
install.packages('Rlgt', repos = c('https://cbergmeir.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/cbergmeir/rlgt/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:

    On CRAN:

    7.57 score 20 stars 31 scripts 304 downloads 4 exports 75 dependencies

    Last updated 4 months agofrom:556bc79e71. Checks:OK: 1 WARNING: 8. Indexed: yes.

    TargetResultDate
    Doc / VignettesOKNov 22 2024
    R-4.5-win-x86_64WARNINGNov 22 2024
    R-4.5-linux-x86_64WARNINGNov 22 2024
    R-4.4-win-x86_64WARNINGNov 22 2024
    R-4.4-mac-x86_64WARNINGNov 22 2024
    R-4.4-mac-aarch64WARNINGNov 22 2024
    R-4.3-win-x86_64WARNINGNov 22 2024
    R-4.3-mac-x86_64WARNINGNov 22 2024
    R-4.3-mac-aarch64WARNINGNov 22 2024

    Exports:blgt.multi.forecastinitModelrlgtrlgt.control

    Dependencies:abindbackportsBHcallrcheckmateclicolorspacecurldescdistributionalfansifarverforecastfracdiffgenericsggplot2gluegridExtragtableinlineisobandjsonlitelabelinglatticelifecyclelmtestloomagrittrMASSMatrixMatrixModelsmatrixStatsmgcvmnormtmunsellnlmennetnumDerivpillarpkgbuildpkgconfigposteriorprocessxpsquadprogquantmodquantregQuickJSRR6RColorBrewerRcppRcppArmadilloRcppEigenRcppParallelrlangrstanrstantoolsscalessnSparseMStanHeaderssurvivaltensorAtibbletimeDatetruncnormtseriesTTRurcautf8vctrsviridisLitewithrxtszoo

    Getting Started with Global Trend Models

    Rendered fromgettingStarted.Rmdusingknitr::rmarkdownon Nov 22 2024.

    Last update: 2019-07-29
    Started: 2018-11-19

    Global Trend Models - LGT, SGT, and S2GT

    Rendered fromGT_models.Rmdusingknitr::rmarkdownon Nov 22 2024.

    Last update: 2019-04-24
    Started: 2018-10-29