RSNNS - Neural Networks using the Stuttgart Neural Network Simulator (SNNS)
The Stuttgart Neural Network Simulator (SNNS) is a library containing many standard implementations of neural networks. This package wraps the SNNS functionality to make it available from within R. Using the 'RSNNS' low-level interface, all of the algorithmic functionality and flexibility of SNNS can be accessed. Furthermore, the package contains a convenient high-level interface, so that the most common neural network topologies and learning algorithms integrate seamlessly into R.
Last updated 12 months ago
8.91 score 26 stars 9 packages 438 scripts 2.6k downloadsRlgt - Bayesian Exponential Smoothing Models with Trend Modifications
An implementation of a number of Global Trend models for time series forecasting that are Bayesian generalizations and extensions of some Exponential Smoothing models. The main differences/additions include 1) nonlinear global trend, 2) Student-t error distribution, and 3) a function for the error size, so heteroscedasticity. The methods are particularly useful for short time series. When tested on the well-known M3 dataset, they are able to outperform all classical time series algorithms. The models are fitted with MCMC using the 'rstan' package.
Last updated 4 months ago
7.57 score 20 stars 31 scripts 304 downloadsopusminer - OPUS Miner Algorithm for Filtered Top-k Association Discovery
Provides a simple R interface to the OPUS Miner algorithm (implemented in C++) for finding the top-k productive, non-redundant itemsets from transaction data. The OPUS Miner algorithm uses the OPUS search algorithm to efficiently discover the key associations in transaction data, in the form of self-sufficient itemsets, using either leverage or lift. See <http://i.giwebb.com/index.php/research/association-discovery/> for more information in relation to the OPUS Miner algorithm.
Last updated 5 years ago
1.00 score 1 stars 2 scripts 203 downloads